

Central tendency measures the center of the distribution. There are three ways to measure the center of the distribution MEAN MEDIAN MODE

Mode The Mode is the number that appears the most. The Mode is not affected by the outliers A distribution can be: Unimodal Bimodal Multimodal

The Median is the value that divides the distribution in two halves. The Median is the Q2 in the Box Plot The Median is a <u>Resistant Statistic</u> because it is not affected by the numerical value of the outliers

How do we calculate the Median? First order the data from low – high If there is an odd number of values – Pick the middle number If there is an even number of values – Average the two middle numbers

In conclusion Mean = non resistant statistic Median = resistant statistic

The Spread of a distribution

 Spread of the distribution refers to variability from the average or from one value to another

Why variability is important

- Central tendency is only part of the story behind the numbers.
- Calculate the average of the following:
 - 8,7,4,4,2
 - 4,5,5,6,5

Why variability is important The average is the same, but the second set has less variability The next one has no variability at all - 5,5,5,5,5

How do we measure the spread Range Interquartile Range IQR Variance Standard Deviation

Range • The range is the difference between the maximum and the minimum value • The range is a non resistant statistic

Interquartile Range The IQR is the difference between the 3rd quartile and the 1st quartile. IQR is a resistant statistic because the value of the IQR is not influenced by extremes.

Variance Definition: The variance is average squared deviations about the mean. The variance measures the spread of a distribution. Variance is a non-resistant statistic Let's analyze the way the formula was derived to have a better understanding.

• 55,57,50,56,62

- The mean = **56**
- How far is each value form the mean?

55 - 56 = -1

57 - 56 = 1

50 - 56 = -6

56 - 56 = 0

62 - 56 = 6

Calculating the variance

- Now from the formula "The variance is the average squared deviations about the mean" we knew that they had to take the average of the numbers just found
 -1,1,-6,0,6
- So they did -1+1+-6+6+0=0
- And that became a big problem......

• But they decided to take each of the values 55-56 =-1 57-56 = 1 50-56 =-6 56-56 = 0 62-56 = 6 And square them, so the sum will not be zero

Calculating the Variance

- So the values squared gave them a sum of 74 and not zero anymore [1+1+36+0+36 = 74]
- Now we can calculate the average of the squared deviations.

$$s^2 = \frac{\sum (x - \overline{x})^2}{n}$$

The Standard Deviation

- The standard deviation is the positive square root of the variance.
- In general, a large SD means that the values are spread out from one another.

Standard Deviation facts

- It is always positive
- Variance is in square units, SD is not (same units as original data)
- ~68% of the values in a sample will be within 1 sd of the mean
- ~95% of the values in a sample will be within 2 sd of the mean
- ~99.7% of the values in a sample will be within 3 sd of the mean

Standard Deviation Facts

- The smallest value for SD is 0 which means that all the values are exactly the same (No Deviation)
- The SD is affected by outliers [NON RESISTANT]

We will learn... • Linear Transformation • Other Transformation • A new graph: Scatterplot • How to measure a correlation - Non Nominal vs. Non Nominal - Nominal vs. Non Nominal - Nominal vs. Nominal

Addition, Subtraction, Multiplication and Division The effect on the shape of a distribution The effect on summary statistics Common Linear Transformation Standard Scores Z Scores

Multiplication and Division

Multiplication or Division

- 1. Mean, Median and Mode = OLD */ K
- 2. SD, IQR, Range = OLD *or / abs(K)
- 3. Variance = OLD * or $/ K^2$
- 4. Skewness = OLD if K is positive, OPPOSITE if K is negative

Addition and Subtraction

Addition or Subtraction

- 5. Mean, Median and Mode = OLD + or K
- 6. SD, IQR, Range = OLD
- 7. Variance = OLD
- Skewness = OLD

Let's compute on SPSS

Now let's look at the shape

- If we take a distribution and multiply every value by <u>a positive number K</u>
- What is the shape of the new distribution if the original was positively skewed?

Now let's look at the shape • Let's see if the skewness changes when we add a positive number K to every value in the distribution

Non Nominal vs. Non Nominal Describing the relationship Correlation Statistic Pearson Correlation Coefficient Significance Test

• Relationships are described in terms of: • Direction • Positive, Negative • Strength • Strong, Weak, Moderate, None • Shape • Linear, Non Linear (Quadratic, exponential...)

Correlation Statistic

- Pearson's Correlation Coefficient. (r)
- Pearson's correlation measures the <u>strength</u> and the <u>direction</u> of the linear relationship between two variables.
- Pearson's correlation value doesn't describe the shape and cannot determine whether a relationship is linear.

Correlation Statistic

- The Pearson's Correlation Coefficient takes continuous values from – 1 to 1:
 - 1 = Perfect Positive Correlation
 - 0 = No Correlation
 - -1 = Perfect Negative Correlation
 - + or -.5 =Strong
 - \bullet + or .3 = Moderate
 - + or .1 = Weak
 - The above table is based on Cohen's Scale

Correlation Statistic

- Correlation is not Causation Correlation is ONLY relation (Association)
- Correlation measures the degree of relationship between two variables.
- The Pearson Correlation does not measures LINEARITY.

Correlation Statistic

- To describe how accurately one variable predicts the other you must square the correlation r.
- Example
 - r = .8 then r square = .64 which means that 64% of the variability in Y scores can be predicted from the relationship with X
- <u>R square</u> is called the <u>coefficient of determination</u> because it measures the proportion of variability in one variable that can be determined from the relationship with the other variable.

Practice 5

Significance Test

- Our main goal is to know if the observed association between variables is the result of chance.
- Significance tests help statisticians determine if the association or pattern between variables can be treated as real or as a by product of chance occurrence.

The Significance Levels

 SL are estimates of the probability that indicates the degree to which <u>chance</u> is a an explanation for observed association between variables.

High SL vs. Low SL

- High Significance Level
 - Indicates a strong possibility that <u>chance</u> could explain a pattern.
 - This means that there is no relationship between the variables.
- Low Significance Level
 - Indicates that <u>chance is not</u> the reason to explain the pattern. There is a relationship between the variables.
 - In this case, the relationship is considered to be <u>STATISTICALLY SIGNIFICANT</u>

Nominal vs. Nominal • A problem using the old way • Crosstabs • Creating Crosstabs on SPSS • Clustered Bar Graphs • Additional Examples

